A 14-dimensional module for the symplectic group: orbits on vectors

نویسنده

  • B. De Bruyn
چکیده

Let F be a field, V a 6-dimensional F-vector space and f a nondegenerate alternating bilinear form on V . We consider a 14-dimensional module for the symplectic group Sp(V, f) ∼= Sp(6,F) associated with (V, f), and classify the orbits on vectors. For characteristic distinct from 2, this module is irreducible and isomorphic to the Weyl module of Sp(V, f) for the fundamental weight λ3. If the characteristic is 2, then the module is reducible as it contains an 8-dimensional submodule isomorphic to the spin module of Sp(V, f).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hyperplanes of DW(5,F) arising from the Grassmann embedding

The hyperplanes of the symplectic dual polar space DW (5,F) that arise from the Grassmann embedding have been classified in [B.N. Cooperstein and B. De Bruyn. Points and hyperplanes of the universal embedding space of the dual polar space DW (5, q), q odd. Michigan Math. J., 58:195–212, 2009.] in case F is a finite field of odd characteristic, and in [B. De Bruyn. Hyperplanes of DW (5,K) with K...

متن کامل

Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits

We introduce a new, simple and efficient method for determining the ordered or chaotic nature of orbits in two-dimensional (2D), four-dimensional (4D) and six-dimensional (6D) symplectic maps: the computation of the alignment indices. For a given orbit we follow the evolution in time of two different initial deviation vectors computing the norms of the difference d− (parallel alignment index) a...

متن کامل

THE PERMUTATION REPRESENTATION OF Sp(2m,Fp) ACTING ON THE VECTORS OF ITS STANDARD MODULE

This paper studies the permutation representation of a finite symplectic group over a prime field of odd characteristic on the vectors of its standard module. The submodule lattice of this permutation module is determined. The results yield additive formulae for the p-ranks of various incidence matrices arising from the finite symplectic spaces. Introduction In this paper, we study the action o...

متن کامل

Coadjoint Orbits of the Virasoro Group

The coadjoint orbits of the Virasoro group, which have been investigated by Lazutkin and Pankratova and by Segal, should according to the Kirillov-Kostant theory be related to the unitary representations of the Virasoro group. In this paper, the classification of orbits is reconsidered, with an explicit description of the possible centralizers of coadjoint orbits. The possible orbits are diff(S...

متن کامل

Toric moment mappings and Riemannian structures

We give an interpretation of the symplectic fibrations of coadjoint orbits for the group SU(4) in terms of the compatibility of Riemannian G -reductions in six dimensions. An analysis of moment polytopes associated to a standard Hamiltonian toric action on the coadjoint orbits highlights these relations. This theory leads to a geometrical application to intrinsic torsion classes of 6-dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014